THE CHEMISTRY OF POLYMERS

POLYMERS

CONTENTS

- Prior knowledge
- Types of polymerisation
- Addition polymerisation
- Polymerisation of propene
- Condensation polymerisation
- Peptides
- Hydrolysis of peptides

What is a Polymer?

Poly mer many repeat unit

Adapted from Fig. 14.2, Callister & Rethwisch 8e.

Ancient Polymers

Originally natural polymers were used

-Wood – Rubber

-Cotton – Wool

-Leather – Silk

Oldest known uses

- Rubber balls used by Incas
- Noah used pitch (a natural polymer) for the ark

Polymer Composition

Most polymers are hydrocarbons

- -i.e., made up of H and C
- Saturated hydrocarbons
 - Each carbon singly bonded to four other atoms
 - Example:
 - Ethane, C₂H₆

Table 14.1 Compositions and Molecular Structures for Some of the Paraffin Compounds: C_nH_{2n+2}

Name	Composition	Structure	Boiling Point (°C)
Methane	CH₄	H H-C-H H	-164
Ethane	C_2H_6	H H 	-88.6
Propane	$\mathrm{C_3H_8}$	H H H 	-42.1
Butane	C_4H_{10}		-0.5
Pentane	C_5H_{12}		36.1
Hexane	C_6H_{14}		69.0

Unsaturated Hydrocarbons

- Double & triple bonds somewhat unstable can form new bonds
 - Double bond found in ethylene or ethene C₂H₄

$$C=C$$

Triple bond found in acetylene or ethyne - C₂H₂

$$H-C\equiv C-H$$

Isomerism

- Isomerism
 - two compounds with same chemical formula can have quite different structures

normal-octane

• 2,4-dimethylhexane

$$H_3C+CH_2+CH_3$$

$$CH_3$$
 $H_3C-CH-CH_2-CH-CH_3$
 CH_2
 CH_3

Chemistry and Structure of Polyethylene

Note: polyethylene is a long-chain hydrocarbon - paraffin wax for candles is short polyethylene

Bulk or Commodity Polymers

Table 14.3 A Listing of Repeat Units for 10 of the More Common Polymeric Materials

Polymer		Repeat Unit
	Polyethylene (PE)	H H -C-C- - H H H H
	Poly(vinyl chloride) (PVC)	H H
	Polytetrafluoroethylene (PTFE)	$\begin{array}{c c} \mathbf{F} & \mathbf{F} \\ & \\ -\mathbf{C} - \mathbf{C} - \\ & \\ \mathbf{F} & \mathbf{F} \end{array}$
	Polypropylene (PP)	H H -C-C- - C- H CH ₃

Bulk or Commodity Polymers (cont)

Table 14.3 A Listing of Repeat Units for 10 of the More Common Polymeric Materials

Polymer		Repeat Unit
	Polystyrene (PS)	H H H -C-C-
	Poly(methyl methacrylate) (PMMA)	H CH ₃ -C-C-C- H C-O-CH ₃
	Phenol-formaldehyde (Bakelite)	CH_2 CH_2 CH_2

Bulk or Commodity Polymers (cont)

Table 14.3 A Listing of Repeat Units for 10 of the More Common Polymeric Materials

Polymer		Repeat Unit
	Poly(hexamethylene adipamide) (nylon 6,6)	$-N - \begin{bmatrix} H \\ \\ -C - \\ \\ H \end{bmatrix}_{6}^{O} \begin{bmatrix} H \\ \\ -C - \\ -C - \\ \\ H \end{bmatrix}_{4}^{O}$
	Poly(ethylene terephthalate) (PET, a polyester)	$-\overset{O}{\overset{b}{}}\overset{b}{\overset{O}{}}\overset{O}{\overset{H}{}\overset{H}{\overset{H}{}}}\overset{H}{\overset{H}{$
	Polycarbonate (PC)	$-\mathrm{o} - \underbrace{\left(\begin{array}{c} \mathrm{CH_3} \\ -\mathrm{C} \\ \mathrm{CH_3} \end{array}\right)}_{\mathrm{CH_3}} - \mathrm{o} - \underbrace{\left(\begin{array}{c} \mathrm{O} \\ -\mathrm{C} \\ -\mathrm{C} \\ -\mathrm{C} \end{array}\right)}_{\mathrm{CH_3}}$

POLYMERISATION

General

A process in which small molecules called monomers join together into large molecules consisting of repeating units.

There are two basic types

ADDITION

all the atoms in the monomer are used to form the polymer

CONDENSATION

monomers join up the with expulsion of small molecules not all the original atoms are present in the polymer

ADDITION POLYMERISATION

- ✓ all the atoms in the monomer are used to form the polymer
- ✓ occurs with alkenes
- ✓ mechanism can be free radical or ionic

ADDITION POLYMERISATION

Preparation

Often by a free radical process involving high pressure, high temperature and a catalyst. The catalyst is usually a substance (e.g. an organic peroxide) which readily breaks up to form radicals which initiate a chain reaction.

Another catalyst is a Ziegler-Natta catalyst (named after the scientists who developed it). Such catalysts are based on the compound TiCl₄.

Properties

Physical vary with reaction conditions (pressure, temperature etc).

Chemical

based on the functional groups in their structure poly(ethene) is typical; it is fairly inert as it is basically a very large alkane. This means it is resistant to chemical attack and non-biodegradable.

ADDITION POLYMERISATION

- Process during polymerisation, an alkene undergoes an addition reaction with itself
 - all the atoms in the original alkenes are used to form the polymer
 - long hydrocarbon chains are formed

The equation shows the original monomer and the repeating unit in the polymer

n represents a large number

ADDITION POLYMERISATION

The equation shows the original monomer and the repeating unit in the polymer

n represents a large number

EXAMPLES OF ADDITION POLYMERISATION

POLY(PROPENE) CHLOROETHENE POLY(CHLOROETHENE) POLYVINYLCHLORIDE PVC **POLY(TETRAFLUOROETHENE) TETRAFLUOROETHENE** "Teflon"

SPOTTING THE MONOMER

POLY(PROPENE)

ISOTACTIC

CH₃ groups on same side

- most desirable properties
- highest melting point

SYNDIOTACTIC

CH₃ groups alternate sided

ATACTIC

random most likely outcome

CONDENSATION POLYMERS

- monomers join up the with expulsion of small molecules
- not all the original atoms are present in the polymer

Examples polyamides (nylon) (kevlar)

polyesters (terylene) (polylactic acid)

peptides
starch

Synthesis reactions between diprotic carboxylic acids and diols
diprotic carboxylic acids and diamines
amino acids

POLYESTERS - TERYLENE

Reagents terephthalic acid HOOC-C₆H₄-COOH

ethane-1,2-diol HOCH₂CH₂OH

COOH

ĊOOH

Reaction esterification

Eliminated water

Equation $n HOCH_2CH_2OH + n HOOC-C_6H_4-COOH \longrightarrow -[OCH_2CH_2OOC(C_6H_4)CO]_n + n H_2O$

Repeat unit $-[-OCH_2CH_2OOC(C_6H_4)CO-]_n$

Product poly(ethylene terephthalate) 'Terylene', 'Dacron'

Properties contains an ester link

can be broken down by hydrolysis

the C-O bond breaks behaves as an ester

biodegradable

Uses fabrics an ester link

POLYESTERS – POLY(LACTIC ACID)

Reagent

2-hydroxypropanoic acid (*lactic acid*)

CH₃CH(OH)COOH

Reaction esterification

Eliminated water

Equation $n CH_3CH(OH)COOH \longrightarrow -[-OCH(CH_3)CO-]_n - + n H_2O$

Product poly(lactic acid)

Repeat unit — [-OCH(CH₃)CO-] —

POLYESTERS – POLY(LACTIC ACID)

Reagent

2-hydroxypropanoic acid (*lactic acid*)

CH₃CH(OH)COOH

Product

poly(lactic acid)

Properties

contains an ester link

can be broken down by hydrolysis

the C-O bond breaks

behaves as an ester (hydrolysed at the ester link)

biodegradable

photobiodegradable (C=O absorbs radiation)

Uses

waste sacks and packaging

disposable eating utensils

internal stitches

POLYAMIDES – KEVLAR

Reagents

benzene-1,4-diamine

benzene-1,4-dicarboxylic acid

$$H$$
 H
 H
 H
 H

Repeat unit

$$-\frac{1}{H} + \frac{1}{C} + \frac{1$$

Properties

contains an amide link

Uses

body armour

POLYAMIDES - NYLON-6,6

Reagents hexanedioic acid

HOOC(CH₂)₄COOH

hexane-1,6-diamine $H_2N(CH_2)_6NH_2$

Mechanism addition-elimination

Eliminated water

Equation $n HOOC(CH_2)_4COOH + n H_2N(CH_2)_6NH_2 \longrightarrow -[NH(CH_2)_6NHOC(CH_2)_4CO]_n + n H_2O$

Repeat unit $-[-NH(CH_2)_6NHOC(CH_2)_4CO-]_n$

Product Nylon-6,6 two repeating units, each with 6 carbon atoms

Polyamides - NYLON-6,6

Properties contains a peptide (or amide) link

can be broken down by hydrolysis

the C-N bond breaks behave as amides

biodegradable

can be spun into fibres for strength

 $O^{\delta-}$ $-C^{\delta+}$ $N^{\delta-}$ +

Uses

fibres and ropes

Peptides

Reagents amino acids

Equation H₂NCCH₂COOH + H₂NC(CH₃)COOH ----> H₂NCCH₂CONHHC(CH₃)COOH + H₂O

Product peptide (the above shows the formation of a dipeptide)

Eliminated water

Mechanism addition-elimination

Amino acids join together via an amide or peptide link

2 amino acids joined dipeptide
3 amino acids joined tripeptide
many amino acids joined polypeptide

Hydrolysis
$$H O CH_3$$

 $HOOC-C-N-C-C-NH_2 + H_2O \longrightarrow HOOCCH_2NH_2$
 $H H H H$
 $HOOCCH(CH_3)NH_2$

The acid and amine groups remain as they are

Hydrolysis is much quicker if acidic or alkaline conditions are used.

However, there is a slight variation in products.

The acid groups remain as they are and the amine groups are protonated

The acid groups become sodium salts and the amine groups remain as they are

Hydrolysis

The acid and amine groups remain as they are

Acid hydrolysis
$$HOOC-C-N-C-C-NH_2 + 2HCl \longrightarrow HOOCCH_2NH_3+Cl + HOOCCH(CH_3)NH_3+Cl + HOOCCH(CH_3)+Cl + HOOCCH(CH_3)+Cl + HOOCCH(CH_3$$

The acid groups remain as they are and the amine groups are protonated

The acid groups become sodium salts and the amine groups remain as they are

Proteins

- polypeptides with large relative molecular masses (>10000)
- chains can be lined up with each other
- the C=O and N-H bonds are polar due to a difference in electronegativity
- hydrogen bonding exists between chains

Degree of Polymerization, DP

DP = average number of repeat units per chain

$$DP = \frac{\overline{M}_n}{\overline{m}}$$

where m = average molecular weight of repeat unit for copolymers this is calculated as follows:

$$\overline{m} = \sum_{i=1}^{n} f_{i}$$
Chain fraction — mol. wt of repeat unit i

Molecular Structures for Polymers

Polymers – Molecular Shape

Molecular Shape (or Conformation) – chain bending and twisting are possible by rotation of carbon atoms around their chain bonds

note: not necessary to break chain bonds to alter molecular shape

Chain End-to-End Distance, r

Molecular Configurations for Polymers

Configurations – to change must break bonds

Stereoisomerism

$$C=C$$
 R

—C—C— or H R

Stereoisomers are mirror images – can't superimpose without breaking a bond

Tacticity

Tacticity – stereoregularity or spatial arrangement of R units along chain

isotactic – all R groups on same side of chain

syndiotactic – R groups alternate sides

Tacticity (cont.)

atactic – R groups randomly positioned

cis/trans Isomerism

$$CH_3$$
 $C=C$ CH_2 CH_2

cis

cis-isoprene (natural rubber)

H atom and CH₃ group on same side of chain

$$CH_3$$
 $C=C$
 CH_2
 CH_2

trans

trans-isoprene (gutta percha)

H atom and CH₃ group on opposite sides of chain

VMSE: Stereo and Geometrical Isomers

Manipulate and rotate polymer structures in 3-dimensions

Copolymers

two or more monomers polymerized together

- random A and B randomly positioned along chain
- alternating A and B alternate in polymer chain
- block large blocks of A units alternate with large blocks of B units
- graft chains of B units grafted onto A backbone

MOLECULAR WEIGHT

Molecular weight, M: Mass of a mole of chains.

Not all chains in a polymer are of the same length — i.e., there is a distribution of molecular weights

Polymer Crystallinity (cont.)

Polymers rarely 100% crystalline

 Difficult for all regions of all chains to become aligned
 crystalline

region

 Degree of crystallinity expressed as % crystallinity.

- -- Some physical properties depend on % crystallinity.
- Heat treating causes crystalline regions to grow and % crystallinity to increase.

amorphous region

Crystallinity in Polymers

- Ordered atomic arrangements involving molecular chains
- Crystal structures in terms of unit cells
- Example shown
 - polyethylene unit cell

Polymer Crystallinity

- Crystalline regions
 - thin platelets with chain folds at faces
 - Chain folded structure

Polymer Single Crystals

- Electron micrograph multilayered single crystals (chainfolded layers) of polyethylene
- Single crystals only for slow and carefully controlled growth rates

Semicrystalline Polymers

- Some semicrystalline polymers form spherulite structures
- Alternating chain-folded crystallites and amorphous regions
- Spherulite structure for relatively rapid growth rates

Photomicrograph – Spherulites in Polyethylene

Cross-polarized light used

-- a maltese cross appears in each spherulite

