Homework-Amines

- 1. Which type of compound **cannot** be a monomer in the formation of polyamides?
 - A. amides
 - B. amino acids
 - C. diacyl chlorides
 - **D.** diamines
- 2.

Fig. 2.1 shows a reaction sequence to form an amine.

Fig. 2.1

- i) Name compound A.
- ii) Reaction 1 heats compound ${\bf A}$ under reflux with an ethanolic solution of potassium cyanide.

Draw the mechanism for the reaction of compound ${\bf A}$ with the ethanolic solution of potassium cyanide to form compound ${\bf B}$.

- Identify the ion that reacts with compound A
- Draw the product of this reaction, compound **B**.
- Include all charges, partial charges, lone pairs and curly arrows.

3. Propylamine can be produced from 1-bromopropane.

Complete the equation for the formation of propylamine.

$$CH_3CH_2CH_2Br + \dots + HBr$$

4. 1-chloropropane can be used to make propylamine.

Which row shows the correct reagents and type of reaction?

	Reagents	Type of reaction
A	Aqueous ammonia	Electrophilic addition
В	Aqueous ammonia	Nucleophilic substitution
С	Ethanolic ammonia	Nucleophilic substitution
D	Ethanolic ammonia	Electrophilic addition

5. Propylamine is a colourless liquid that is used to manufacture a variety of chemicals including textile resins, drugs and pesticides. It can be produced by the reaction of 1-chloropropane with ammonia.

$$CH_3 - CH_2 - CH_2 - CI \xrightarrow{NH_3} CH_3 - CH_2 - CH_2 - NH_2$$

- i) State the role of the ammonia in this reaction.
- ii) Name the type of reaction that occurs in this synthesis of propylamine.
- 6. Compound **X** is produced from cyclohexene. An amine which is a relatively weak base containing one nitrogen atom can be produced from compound **X** in one step.

Outline a mechanism for the formation of compound \mathbf{X} from cyclohexene. You will need to give suitable reagents in your answer.

- 7. What type of reaction makes ethylamine from bromoethane?
 - A. Oxidation
 - **B.** Reduction
 - C. Nucleophilic substitution
 - D. Electrophilic substitution
- 8. When 1-bromoethane reacts with an equal amount of **X**. What would **X** be and what is the product of this reaction?

	X	Product
Α	Ammonia	Amine
В	Methylamine	Amide
С	Water	Weak acid
D	Methanol	Ethyl methanoate

9. CH₃CH₂Cl reacts with an excess of ethanolic NH₃.

Which compound is the main organic product?

- **A.** (CH₃CH₂)₃N
- B. (CH₃CH₂)₂NH
- C. CH₃CH₂NH₂
- **D.** (CH₃CH₂)₄N⁺

10. What is the correct set of reagents and conditions for the two reactions shown?

	$(CH_3)_2CO \rightarrow (CH_3)_2CHCN$	CH ₃ CHC/CH ₃ → CH ₃ CH(NH ₂)CH ₃
Α	Sn/conc.H ₂ SO ₄	Dilute ethanolic NH ₃
В	Sn/conc. HCI	Excess ethanolic NH ₃
С	NH ₃	Nitric acid / 50 °C
D	KCN, H ₂ SO ₄	Excess ethanolic NH ₃

11. Which amine could not be produced by the reduction of a nitrile?

В.

C.

D.

12.

What is the systematic name of the amine shown?

$$\begin{bmatrix} CH_{3} \\ H_{3}C - N - C_{2}H_{5} \\ C_{2}H_{5} \end{bmatrix}^{+} CI^{-}$$

- A. Dimethyldiethyl ammonium chloride
- B. Diethylmethyl ammonium chloride
- C. Diethyldimethyl ammonium chloride
- D. Methylethyl ammonium chloride